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A Monte Carlo simulation of the inhomogeneous Lebwohl-Lasher 
lattice model 
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INFN Sez. di Bologna and CNAF, Via Mazzini, 2, 40138 Bologna, Italy 

and C. ZANNONI 
Istituto di Chimica Fisica, Universita, Viale Risorgimento, 4, 401 36 Bologna, Italy 

(Received 16 July 1986; accepted 25 August 1986) 

A Monte Carlo computer simulation of a modified Lebwohl-Lasher model is 
presented. The model consists of a set of interaction centres placed at the sites of 
a cubic lattice. The angular part of the pair potential is a second Legendre 
polynomial of the relative orientation between the two particles, like that of the 
Lebwohl-Lasher model. Each particle interacts with its six nearest neighbours 
with an attractive anisotropic potential differing in strength for the four horizontal 
and the two vertical neighbours. Various values of the in-plane to out-of-plane 
coupling ratio 6 have been considered, i.e. 6 = 0.75, 0.5, 0.1, 0.0. The latter case 
corresponds to the limiting situation of a two-dimensional lattice. Systems with a 
1000 particles have been simulated for 6 = 0.75,0.5 and 0.1 while a sample of 3600 
particles has been investigated for the two-dimensional lattice. Comparisons are 
made with available simulations and with mean field theory. We find that the 
molecular field theory predictions worsen as the effective coordination number is 
decreased. Energy, specific heat, second and fourth rank order parameters have 
been evaluated for the various models. We also present, for the first time, a way 
of approximately reconstructing the pair distribution, G ( r I 2 ,  w I 2 ) ,  using maximum 
entropy and second and fourth rank two particle order parameters. 

1. Introduction 
Lattice models play an important role in the theory of phase transitions [l-61. This 

has been widely recognized for spin systems [1-6] and, more recently for systems 
mimicking the orientational phase transitions found in mesophases [7,8]. In the liquid 
crystal field one of the most popular models is that originally due to Lebwohl and 
Lasher [7-171, where particles are placed on a cubic lattice and the pair potential is 
taken to be 

Q.J = - EL]P2(CoS f i t ] ) .  (1) 

Here is a parameter expressing the strength of the attractive interaction. It is a 
positive constant, E ,  for nearest neighbour particles i and j and zero otherwise. /3,J is 
the angle between the symmetry axes of these two molecules, Monte Carlo computer 
simulations on a 30 x 30 x 30 lattice indicate that the Lebwohl-Lasher model exhi- 
bits a phase transition at a dimensionless temperature T* = kT/E 2: 1.1232 [17]. 
Molecular field theory [18, 191 predicts instead, for this system, a first order phase 
transition at the rather higher temperature T;, = 1.321 [19]. This approximate theory 
is also unable to account for the closeness of the isotropic phase limiting instability 
temperature to the proper transition temperature [20,2 11. Apart from these short- 
comings and from an overestimation of the transition temperature and entropy, 
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40 C. Chiccoli et al. 

molecular field theory works reasonably well. In particular the dependence of the 
second rank order parameter ( P2) on the reduced temperature T+ = T/TN,,  predicted 
by molecular field theory to be a universal curve (without any adjustable parameter) 
is in more than reasonable agreement with experiment [19]. However, it ought to be 
said that this particular order parameter versus temperature curve would be obtained 
under fairly mild conditions with other theories as well. Indeed every theory leading 
to a singlet distribution of the type 

would produce an identical dependence of ( Pz) on T+.  We are thus left with the 
unpleasant situation of a theory that, as we know a posteriori, is at least partially 
satisfactory, but whose predictive power is difficult to assess. Here we would like to 
provide a test of this predictive power in a very simple and controlled situation by 
changing only one element in the potential. In the inhomogeneous Lebwohl-Lasher 
model presented in $2 the relative strength of in-plane to out-of-plane interaction is 
changed. We shall show how this affects molecular field predictions and how well 
these predictions are borne out by the simulation. 

2. The inhomogeneous Lebwohl-Lasher model 
Here we have chosen to study the generalized model with the hamiltonian 

where the sums are extended, respectively, to the nearest neighbours in the same 
laboratory horizontal plane (i.e. with interparticle vector rii 11 X, Y) and to  the neigh- 
bours along the vertical, 2 axis. We shall call this the inhomogeneous Lebwohl- 
Lasher model, by analogy with the so-called inhomogeneous or spatially anisotropic 
Ising models introduced in the study of magnetism [l, 221. As in the original Lebwohl- 
Lasher model in equation (1) [7] the potential is attractive. The interaction constants 
are positive and equal to E ~ ,  cIl if particles i and j are first neighbours and zero 
otherwise. The parameter 6 = / E ~  gives the relative strength of the two interactions. 
It is clear that the model reduces to the usual Lebwohl-Lasher one when 6 = 1. The 
lowering of 6 describes a weakening of the interlayer coupling. At the limit 6 = 0 the 
system becomes a collection of independent two-dimensional layers. In this limit the 
lattice becomes a planar version of the Lebwohl-Lasher model first examined by 
Mountain and Ruijgrok [ 1 I ]  and will be more closely investigated elsewhere [23]. In 
general the present model pictures therefore an inhomogeneous, multilayer, system. 
It is in a way an extremely simplified model for the orientational properties of a 
smectic liquid crystal [24]. Here the shape of the anisotropic orientational potential 
between the neighbouring molecules is taken to be the same both when the molecules 
belong to the same or to neighbouring layers, except for a weakening in the strength 
of the interaction. The model also assumes that the molecules are kept apart by some 
other mechanism, essentially as the Lebwohl-Lasher model assumes the molecular 
positions to be fixed by some additional mechanism to the sites of an isotropic cubic 
lattice. We know, of course, that in real nematics molecules are free to move more 
or less as in a liquid. On the other hand the spirit of the model is to concentrate on 
orientational features and to assume the rest to be relatively less important. Here we 
are just singling out in a similar way an aspect of smectics, i.e. that to a first 
approximation smectic molecules are distributed in layers. Of course we should stress 
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The inhomogeneous Lebwohl-Lasher model 41 

that there are many qualifications to go with the smectic analogy. For example, the 
potential depends only on relative orientations (similar on the other hand to the 
McMillan one [24]), so there is no possibility of director tilt and thus of distinguishing, 
for example, a smectic A from a smectic C. Moreover, and even more seriously, the 
model does not allow for changes in translational order so we are really just looking 
at a orientational disordering transition. Within these limitations, there are however 
a few interesting analogies we can make. Smectogenic molecules are often made up 
of a rigid core with floppy chains at  the two ends. We can imagine that by changing 
the end substituents and making their tails longer the strength of the interaction 
between molecules belonging to different layers will be weakened. Correspondingly 
the parameter 6 will be reduced up to the point where each layer becomes a quasi 
two-dimensional system. On an intuitive basis we might expect the character of the 
orientational transition to change as the dimensionality of the latter changes in this 
way. On the other hand, as we shall recall in $3, molecular field theory predicts that 
only a scaling of the energy due to the change in effective coordination number should 
occur. Indeed molecular field theory predicts that two lattices will have the same value 
of Tz  when they have the same coordination number irrespective of the dimensionality 
of the lattice as, for example, is the case for a three-dimensional cubic and a two- 
dimensional hexagonal lattice. This is particularly strange when the all-important role 
of lattice dimensionality in the modern theory of phase transition is remembered. 

In general, molecular field theory is expected to be exact when the coordination 
number tends to infinity [l, 151 and each molecule interacts on the same footing with 
all the others in the system. It is interesting to see how the relative effectiveness of 
molecular field theory is modified when changing the coordination number from the 
value six found in the cubic lattice to other values. Luckhurst et al. [15] have studied 
a face centred Lebwohl-Lasher lattice where the coordination number is 12. It might 
be expected that in that instance the performance of molecular field theory is 
improved and indeed this is borne out by the simulations. Here the test is somewhat 
more severe since the effect of changing coordination number is accompanied by a 
move toward a descent in lattice dimension. 

3. Mean field theory 
The potential of mean torque is obtained by standard means [19] upon averaging 

the pair potential in equation (3). We find 

u(B) = - ( 2 ~ ~ ~  + ~ E J ( P ~ ) P ~ ( c o s B ) ~  (4) 

where j is the angle between the molecule and the director and we have assumed ( P ,  ) 
to be the same throughout the sample. We can rewrite equation (4) as 

W W T  = - ~ X 2 6  + 4)/kTI(~,)P2(cosB),  ( 5 )  

where 6 is the ratio of vertical to horizontal coupling introduced previously. A 
comparison of this with the effective potential for the Lebwohl-Lasher model, i.e. 

U(B)/kT = - (zE/~T)(P~)P~(COS (6) 

where z (here z = 6 )  is the coordination number, shows that at  molecular field 
theory level the effect of changing the interlayer coupling is merely that of renormal- 
izing the temperature. Instead of kT/E we have, when 6 is not one, an effective 
reduced temperature kT/[(26 + 4) E ~ ) ] .  In particular the transition temperature is 
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42 C. Chiccoli et al. 

predicted to be at (T$)6 = (7',*,),,(26 + 4)/z. Putting numbers in we have (T$,)& = 
1.1232(26 + 4)/6 = 0.1872(2S + 4). Thus molecular field theory makes a definite 
prediction, Plotting (T$l)6 against 6 we should find a straight line with slope 0.374 and 
intercept 0.749. The character of the transition should be unchanged as 6 is reduced. 
Even in the two-dimensional lattice limit, with 6 = 0, the transition properties 
expressed in dimensionless units should be the same. 

Saying it in another way, we see that the lattice dimensionality does not play a role 
at  mean field level, even though of course the spin dimensionality (the number of 
orientational degrees of freedom) does. A lattice with spin dimensionality one and 
lattice dimensionality one has been studied by Denham et al. [25]. A lattice of 
dimensionality two with spin dimensionality one has also been investigated [I 11. As 
already mentioned the effective coordination number z' = (26 + 4) is the only 
relevant parameter and mean field theory predicts that, for example, a bidimensional 
triangular lattice and a tridimensional cubic lattice should have the same thermo- 
dynamic properties. The order parameters at  the transition are also predicted to be 
insensitive to 6 and so is, for example, the dependence of ( P4) on ( Pz). 

4. The simulations 
We have studied four systems with different values of the ratio 6 of out-of-plane 

to in-plane coupling constant, i.e. 6 = 0.75,0.5,0.1 and 0.0. Our previous experience 
with the Lebwohl-Lasher model and that of other groups indicates that a sample size 
of a thousand particles is sufficient to yield the properties of the simulated model with 
a reasonable accuracy (- 2 per cent), provided the interest is not on the immediate 
neighbourhood of the phase transition. We have thus chosen to study 10 x 10 x 10 
lattices for the three-dimensional models. The two-dimensional limit is more delicate, 
since it  has been studied only in one case and only for sizes up to 20 x 20 [l 11. In a 
separate study [23] we have now shown that a 60 x 60 size has essentially converged 
to the large size limit, so this is the size used here. A standard Monte Carlo method 
with periodic boundary conditions has been employed to generate equilibrium con- 
figurations. The simulation at the first temperature studied for each of the four cases 
was started from a completely aligned system. The simulations at the other tem- 
peratures have been normally run in cascade starting from an equilibrium configu- 
ration at a nearby lower temperature. The orientation of each particle is stored as 
cos p and u, where 6 and ct are the spherical polar angles of the symmetry axis of each 
particle. The configuration of the system is thus given by the set of Nsuch orientations 
{cY', 0 , )  where N is the number of particles. We update one particle at  a time and as 
usual we shall call a cycle a set of N attempted moves. A new configuration is 
generated by choosing a particle at random out of those that we have not yet 
attempted to move during the current lattice sweep [I71 with a simple random 
shuffling algorithm [26]. The orientation of the chosen particle is then changed by 
generating new uniformly distributed random values of the variables cos p and u. A 
satisfactory rejection ratio is achieved for our temperature range even with these 
potentially large orientational jumps. In every simulation a minimum of 4000 cycles 
has been used for equilibrium and thus rejected when calculating averages. 

Any property of interest, A ,  is evaluated at  every cycle. After a certain number of 
cycles rn, (typically between 1000 and 2000) an average AJ is calculated thus effectively 
coarse graining the trajectory. A further grand average is then computed as the 
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The inhomogeneous Lebwohl-Lasher model 43 

weighted average over M such supposedly uncorrelated segments 
M 

( A )  = ( l / l V C )  m J A J ,  (7) 
J 

where N, = C,M mJ is the total number of production cycles. The attendant weighted 
standard deviation from the average crA is also calculated and gives the error estimates 
reported for order parameters and energy in tables A 1, A 2, A 3, A 4. These tables, 
comprising five pages, have been deposited with the British Library Document Supply 
Centre as a Supplementary Publication; copies may be obtained from the British 
Library according to the procedure described at the end of the Journal and by quoting 
the number SUP 16502. 

We have calculated for each simulation energy, second and fourth rank order 
parameters and pair correlation coefficients again of second and fourth rank. The heat 
capacity of the system has been evaluated from the internal energy as described later. 

5. Results and discussion 
5.1. Energy 

The energy of the system is calculated as a sum of pair interactions as in equation 
(3). The average dimensionless single particle energies U* = ( U ) / N c I  at the various 
reduced temperatures T* = kT/c, studied are shown in figure 1 for the four systems 
examined. The general trend of the various curves at high temperature can be 
understood by expanding the configurational partition function around the isotropic 
limit. We find for our cubic lattice 

Z ,  = (47~)"l + N(2  + ~5~)/(10T*') + (2 + 63)/(105T*3) + . . .] (8) 

to third order in inverse temperature. Correspondingly the energy per particle is 

( U ) / N c I  = -(2 + 6')/(5T*) - (2 + h3)/(35T**) - . . . . (9) 
Thus we see that at  high temperatures the curves for small 6 should tend to cluster 
together, since d2 is negligible compared to 2. Moreover the curves should approach 
- 0.4/T* in this limit. Looking at figure 1 we see that this is indeed the case. At low 

0 . 2  0 . 4  0 . 6  0 . 8  1.0 1.2 

T '  

Figure 1. The single particle energy, U* = ( U ) / N E ~ ,  as a function of the dimensionless 
temperature T* = kT/e, for the Monte Carlo simulation of the inhomogeneous Lebwohl- 
Lasher model with 6 = 0.75 (O), 0.5 (0), 0.1 (A) and 0.0 (+). Lattice size is 10 x 10 x 10 
for the first three cases and 60 x 60 for the last. 
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44 C. Chiccoli et al. 

temperatures each curves goes to its complete order limiting value 

5.2. Heat capacity 
The heat capacity is obtained here by differentiating the average energy with 

respect to temperature. It is known that the differentiation of experimental or, in 
general, noisy data is an ill-posed problem [27]. It can be tackled through smoothing 
interpolation, for example, using suitable spline functions [ 16, 171 or by inversion 
methods [27]. Here we have chosen this last approach, which consists of solving the 
integral equation 

U ( T )  = U(T,) + dT'CJ(T') .  (1 1) s:, 
In our case energies are known at a set of temperatures, U(T,) ,  which we can use to 
build an M component vector of energy differences u. We can thus write 1,) dT'C,*(T') = uj, 

where the integral is extended to the ith energy interval. Choosing to calculate C,* at 
a grid of K temperatures and employing a suitable numerical integration formula we 
reduce the integral equation to the matrix equation 

wc = u, (1 3) 

where W is the weight matrix for the chosen numerical integration. W will of course 
be rectangular in normal circumstances and the problem of finding C is solved in 
terms of the generalized inverse matrix W'. The generalized inverse is obtained here 
using the method of Rust et af. [28] as implemented by Lorenzutta [29]. The integra- 
tion formula chosen is trapezoidal. The heat capacity was also calculated indepen- 
dently by interpolating and smoothing the energy data using a five point orthogonal 
formula before performing a standard numerical differentiation [30]. The results are 
similar to those found previously for our systems. The estimate of errors in heat 
capacity calculations is rather complicated because of the numerical schemes employed. 
We have thus introduced a simulation procedure as follows. First we generate a rather 
large number (here 100) of plausible energy versus temperature curves by sampling 
energy values at each temperature from a gaussian distribution of width given by the 
known standard deviation from the mean at  that point. We then repeat the heat 
capacity calculation for every curve and obtain a set of C,* values whose average and 
standard deviation are our final reported results. The heat capacity and standard 
deviation errors obtained in this way are reported on the same scale in figures 2 (a)-(d) 
for the various 6 values. Comparing the various curves we see that in every case the 
heat capacity presents a peak which shifts to lower temperatures as 6 decreases. We 
notice also that all the curves tend to C,* = 1 at low temperature, in keeping with the 
two degrees of freedom available to any of these systems. As the interlayer coupling 
becomes smaller the heat capacity peak lowers in intensity and its shape becomes 
broader and more symmetric. These results suggest a change in the character of 
transition not anticipated by molecular field theory. In figure 3 we have plotted our 
pseudo isotropic-nematic transition temperature, i.e. the temperature of the heat 
capacity anomaly maximum versus 6. The Lebwohl-Lasher model result at 6 = 1 [17] 
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0.2 0.U 0.6 0 . 8  1 . 0  1.2 
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3 +*+ 4 

0 . 2  0 . 4  0 .6  0 . 8  1.0 1 . 2  

45 

Figure 2. The heat capacity, C,t, obtained from differentiation of the energy with respect to 
T* as described in the text. Interaction anisotropy ratios 6 = 0.75 (a), 0.5 (h), 0.1 (c) and 
0.0 (d ) .  Lattice size is 10 x 10 x 10 for the first three cases and 60 x 60 for the last, as 
in figure 1. 
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1.2 
, * 1 ' 1 ~ 1 ~ 1 ' 1 ~ 1  

"11.11 

0l 0 . 6  + 
0.51 I I I 1  I I I I I I 

0.0 0.2 0.U 0.6 0.8 1.0 

6 

Figure 3. A plot of the temperatures where the heat capacity is a maximum, i.e. the pseudo 
transition temperatures, for the various 6. Data are from this work except the 6 = 1 
point which comes from [17]. The continuous line is the molecular field prediction 
rescaled so that it is exact at 6 = 1. 

Transitional properties for various generalized Lebwohl-Lasher models. Here 6 is the in-layer 
to out-of-layer coupling ratio. z' is the effective nearest neighbour number, z' = 
(4 + 26). We report the pseudo transition temperatures (T&)c, and (T&)D obtained 
from the heat capacity and order parameter derivative. The peak values C&x and 
[d(P,)/dT*],,, are reported. The results correspond to a 60 x 60 system when 6 = 0 
and 10 x 10 x 10 systems when 6 = 0.1, 0.5, 0.75 respectively. We also show as MFE 
the percentage deviation of the simulated transition temperatures from the molecular 
field predicted value. 

MFE 
6 z' ( G I  )c, GdX ( G ~ D  V(P2 )ldT*I,,, (per cent) 

~ 

0 4 0.61 0.05 3.1 0.57 0.05 - 4.8 44.4 This work 
0.1 4.2 0.71 0.04 4.0 0.71 0.03 - 4.4 30.4 This work 
0.5 5.0 0.92 0.02 6.7 0.92 f 0.02 - 6.8 19.7 This work 
0.75 5.5  1.03 +_ 0.02 7.1 1.03 f 0.01 - 6.3 17.6 This work 
1 6 1.1232 0.0006 17.6 [I71 
4 12 2.43 & 0.03 8.7 [I51 

has also been included and we have scaled the molecular field prediction so that it 
matches this case. We see that the well-known overestimation of the transition 
brought about by the molecular field approximation is magnified when the inter-layer 
coupling and thus the effective coordination number decreases. In the table we give 
numerical values for the heat anomaly and we also compare the percentage deviation 
between the transition temperatures predicted by molecular field theory and those 
found in this study. 

5.3. Order parameters 
The second rank order parameter is calculated as usual in systems with periodic 

boundary conditions [8,31] from the 3 x 3 ordering matrix Q, defined for a certain 
configuration as the sample average 
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I -  ++ & 

4 ';I 41 1 ++ 4 

t 1 4  " m  

I 0.41. m m 

Figure 4. The second rank order parameter (P, for the four systems defined in figures 1 and 
2 at temperature T*. Here ( P z ) l  is obtained from the largest eigenvalue of the ordering 
matrix as explained in the text. 6 = 0.75 (O), 0.5 (O), 0.1 (A) and 0.0 (+). 

where, for example, q,3x stands for the x component of the unit vector q, specifying 
the orientation of the ith particle and the sum is extended to all the particles in the 
system. More precisely an order parameter ( P 2 ) 1  has been evaluated in the present 
work by computing and diagonalizing 0 at every cycle and successively averaging the 
largest eigenvalue, A3 of 0, 

We recall that the matrix 0 is traceless so that 1, 2 0 and ( P z ) j .  2 0. The eigen- 
vector matrix, U, defines the transformation between the laboratory and the director 
coordinate frame and will be used later. The order parameters ( P 2 ) ,  obtained in this 
way are plotted as a function of temperature in figure 4 for the various systems 
studied. The order parameter is a long range property defined over the whole sample. 
At a true first order phase transition it falls discontinuously to zero. In our finite 
sample there is no bona fide discontinuity but the order parameter still changes very 
rapidly in the transition region. It is interesting to consider the temperature derivative 
of the order parameter, D, = d((P2) , ) /dT*,  as a long range indicator of the tran- 
sition and to compare its reponse with that of the short range indicator, i.e. of the heat 
capacity. We have thus computed these derivatives and their relative error estimates 
following the same procedure previously introduced for the heat capacity. We find the 
results presented in figures 5 (a)-(d).  The values of the long range pseudo transition 
temperatures obtained are reported in the table. We see that there is excellent 
agreement between the long range and the short range indicators. Even for the 
two-dimensional system the short range and the long range indicators are within our 
estimated error. 

We now turn to the calculation of the fourth rank order parameter ( P4) accord- 
ing to the algorithm proposed in [17]. The method is based upon introducing an 
auxiliary fourth rank tensor F, with components l$, = S,,,6,~2Sk,zS,,z in the molecule 
fixed frame. The tensor component Fzzzz in the director frame is, when averaged over 
the sample, 
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-2  

- 8  I I I l l  I I l l ,  I I , , , I , / ,  
0 . 2  0 . 1  0.6 0 . 8  1.0 1 . 2  

T. (4 
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-2 c 0 '  

-8  -6?.1 0.2 0.4 0 . 6  0.E 1.0 1 . 2  

1' 
(b)  
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t t  -T 4 

0.2 0.U 0.6 0 . 8  1.0 1.2 

T '  
(d 1 

Figure 5. The temperature derivative of the second rank order parameter, d(( P2)l)/dT*, 
obtained as described in the text. Interaction anisotropy ratios 6 = 0.75 (a), 0.5 (b), 0.1 
(c )  and 0.0 ( d ) .  
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so that it can be used directly to compute the fourth rank Legendre polynomial 
average over the sample ( P4)s as 

(P4)s = y(cos")s - y(cos2p)s  + 2. 
The relevant component in the director frame is determined by first calculating at 
every lattice sweep the sample average of the tensor F in the laboratory frame as 

(F,L,,d)S = ( 9 o q b q c q d ) S  (18) 

( F&ZZ >S = 1 uo.Z ub.Z u~.Z ud.Z ( Fkh~d > S .  (19) 

then rotating to the director frame employing the previously determined 0 eigenvectors 
matrix, i.e. U. Thus 

a,b.c,d 

This quantity is then averaged over the cycles and employed to produce the calculated 
( P4)*. The values for the fourth rank order parameter obtained for our simulation 
are reported as a function of temperature in figure 6 .  We have also plotted in figure 
7 the fourth rank versus the second rank order parameter for the various anisotropies. 
Also plotted is the curve obtained by using the distribution function in equation (2) 
thus in particular a Maier-Saupe type molecular field theory. We see that the curves 
are all relatively similar. However, the agreement with the molecular field curve is 
clearly much better at  high 6 and worsens on going towards the two-dimensional 
limit. Thus the mean field prediction that the dependence of ( P4) on ( P2) should be 
unchanged as the interlayer coupling is reduced is only partially verified. 

7 I -1 - T  7 - n  I 7-r i T r T- r 0 . 6  

\pll 

0 . 2  0.U 0 . 6  0 . 8  1 . 0  1 . 2  

T "  

Figure 6. The fourth rank order parameter (P4)1 obtained as described in the text plotted as 
a function of the reduced temperature. 6 = 0.75 (O), 0.5 (O), 0.1 (A) and 0.0 (+). 

5.4. Orientational pair correlations 
The rotationally invariant pair distribution G(r l z ,  o12) [8] determines the probability 

of finding two particles at distance r I2  with a certain relative orientation oIz. As 
discussed elsewhere [8] it is convenient to expand G ( r l z ,  oI2) in a series of Legendre 
polynomials as 

G(r123 0 1 2 )  = GF'(r12) 1 [(2L + 1)/64n41G,(r~z) PL(COS BIZ), L even (20 a) 
L 

= [G?(rlz)/64~41(1 + G2(r12) P2(c0s B12) + G 4 ( r l Z )  p4(c0sP,2) + . . .>, 

(20 b)  
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0.6 

<Pl ’A 

0.4 

0.2 

0.0 
0.0 0.2 0.u 0.6 0.8 

(4 <p2 ’k 

Figure 7. The fourth rank order parameter ( P4)1 obtained as described in the text plotted 
against the second rank order parameter ( P 2 ) l .  Also shown is the molecular field 
prediction (continuous line). Interaction anisotropy ratios 6 = 0.75 (a), 0.5 (b) ,  0.1 (c) 
and 0.0 ( d ) .  
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where Gp(r12) is the scalar distribution of the particle centres and the expansion 
coefficients define two-particle order parameters. These in turn give the correlation 
between the orientation of two particles separated by a distance rI2 

GL(rl2) = P / G F ( ~ I d l  p o ,  dw,G(r,*, Wl*> Pdcos PI2), 

= <PL(cosP12))1,2. (21) 

For our lattice system the particle positions are fixed and their distribution is just a 
series of delta functions centred at the successive shell positions at distance rk from the 
reference particle and with a population of zk neighbours. Here we intend r to be 
expressed in lattice units. 

We have calculated the first two angular pair correlation coefficients G,(r) and 
G4(r) [8,17]. In figure 8 we show G2(r)  and C4(r) for three temperatures for the system 

0 1 2 3 u 5 
r 

Figure 8. The second rank spatial correlation function G2(r )  and its fourth rank analogue 
C,(r) for the inhomogeneous Lebwohl-Lasher model with anisotropy 6 = 0.1. We 
show results at three temperatures, below and above the transition, i.e. T* = 0.40, a;  
0.62, h; and 0.82, c. 
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T 5. (4 

bb 

Figure 9. Histograms of the positional-orientational pair distribution G ( r , 2 ,  q2) as recon- 
structed from maximum entropy principles (equation (22)) for 6 = 0.10. Three instances 
are shown, respectively at  temperature T* = 0.40 (a), 0.62 (b)  and 0.82 (c). These 
correspond to the C2(r)  and G4(r) in figure 8. 
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with 6 = 0.1. The curves show the expected decay respectively to a plateau or to zero 
when the temperature is below or above the transition. As we see from equation (20), 
G2(r) and G4(r) define a second rank truncation of the whole pair distribution. 
Although this approximation is all we need to calculate second rank and fourth rank 
pair properties we do not expect it to be a very good approximation to the full pair 
distribution on the left-hand side of equation (20). In particular a paradoxical 
negative probability could even be found by retaining the simple truncation. We have 
therefore used G2(r) and G4(r) to reconstruct the best inference for the two-particle 
distribution according to maximum entropy principles [ 16,321 based on the second 
rank and fourth rank information, i.e. 

W I 2 ,  w12) = G?(r,2) exp [a, + a2(r12) P2(COS 812)  + a4(r12) Pdcos 812) l .  (22) 
The coefficients a, and u4 are obtained numerically by imposing the condition that at 
every rI2 the two point order parameters G2 and G4 are re-obtained by integration of 
equation (22). As far as we are aware this is the first such reconstruction of the pair 
distribution. In figure 9 we show, as an example, histograms reconstructed in this way 
from the three sets of G,(r) and G,(r) given in figure 8. The distributions are normal- 
ized by integration upon distances and orientations to the same constant value. 

6. Conclusions 
We have studied four systems belonging to the generalized Lebwohl-Lasher 

model family where the inter-layer coupling is decreased up to the limit of indepen- 
dent layers. We have found that the transition temperature decreases by reducing the 
coupling and that the reduction is progressively greater than predicted by the mol- 
ecular field theory. Thus the 20 per cent in the nematic-isotropic transition tem- 
perature in the Lebwohl-Lasher model cannot be taken, in general, as a safe estimate. 
Moreover the transitions becomes less first order in character, while again this is not 
anticipated by mean field. In our investigation we have characterized the nematic 
phase with second and fourth order parameters. We have also proposed a way of 
reconstructing the pair distribution using maximum entropy techniques. 

The simulations were run on a DEC VAX 11-780 minicomputer at Istituto di 
Fisica, INFN, and on a VAX 11-780 and VAX 11-725 at Istituto di Chimica Fisica. 
C.Z. thanks C.N.R. and Min.P.1. (Rome) for grants towards the cost and main- 
tenance of the latter systems. 
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